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Abstract

If ordinary least squares regression methods are to be used, the standard deviation of the signal should not
depend on the sample concentration, but this is not true in CE. Results indicate, that the signal standard deviation
is approximately proportional to the sample concentration. Therefore weighted least squares regression must be
used, if the standard deviation within the concentration range differs by more than the factor 50. It is advised to use
this regression method down to the factor 5, where the difference to ordinary least squares calculations is still
significant. This is demonstrated by comparing experimental and simulated data. These considerations are valid for
other analytical techniques as well, if their characteristics of calibration and variance function are similar.

1. Introduction

The use of capillary electrophoresis (CE) as a
quantitative analytical technique is becoming
more and more important [1-3]. Thus the choice
of appropriate calibration functions must be
considered. The importance of the sensitivity
and its meaning for the precision was discussed
in Part I [4]. The consequences of heteroscedas-
ticity (dependence of the signal standard devia-
tion on the sample concentration) shall be dis-
cussed by using data sets of preceding works
{4,5] and simulations.

2. Experimental

The CE experiments were described in Part |
[4] and [3].

* Corresponding author.

2.1. Simulations

Each simulated data set consists of six equidis-
tant blocks at position x,. The values of x; are
given in the tables. Eight y values are deter-
mined for each block, leading to 48 data pairs. In
a first step the y values are calculated by Eq. 1:

Y=o, tax; (1)

Straight lines with a slope of ¢, =1 and an
intercept of a, =0 were used for simplicity. In
the second step normal distributed noise was
added. Usually the standard deviation of this
noise was chosen as 10% of the signal (Eq. 2):

yl = .vr + (]1 ’ .ylsl (2)
Here ¢ a normal distributed random variable

with a standard deviation of 1 [6]. Thus ¢, can be
positive or negative.
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2.2. Weighted least squares algorithms

If the algorithm WLS/IV is used, the weight-
ing factor w, is defined as the inverse of the
variance of y,[var(y,); Eq. 3]. In case of heteros-
cedasticity this variance depends on the position
x; of the data pair. Thus var(y,) is defined as the
variance of all y, with identical x,. Several data
pairs with identical x, must be available to
estimate these weights [7-10].

1
T var(y,)

The data of the weighted centroid (x,,y.) as well
as of the slope a, are then obtained by the Egs.

(3)

=15 (4)

_ Z w[ 2 wi'xiyz - Z Wl’xl z wiyi
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The intercept a, can be calculated by Eq. 7:
al):y‘chalx_c (7)

The further developed algorithm GLS/VFE
[7.8] is outlined in the following:

(1) Start with a preliminary estimation of the
regression parameters by OLS regression (Eqgs.
4-6, all w, =1). Set variance parameter @ = 0.

(2) Calculate sdv(y):

[y, = $0c))°
Z PR (8)

(6)

Here y(x) is the linear regression function, thus
)A’(xi):);c+a1(x1‘fc) 9)

The standard deviation sdv(y) is simply the
square root of var(y).

(3) The pseudo-maximum likelihood L is
estimated using Eq. 10 [11]:

L = —nlog [sdv(y)] - E log [¥(x,)®] (10)

L is maximized by variation of @ in the range
between —0.3 and 1.5. The step width begins
with 0.01, the interval where the highest L are
found is further examined in steps of 0.001. Note
that sdv(y) depends on &. For each calculation
sdv(y) is again calculated using Eq. 8.

(4) Calculate new weights (Eq. 11); use © of
maximized L:

b
)™
Note that GLS/VFE can estimate weights with-
out having several data pairs (x;,y;) with identi-
cal x,.

(5) Estimate new regression parameters by
Eqgs. 4-6 using the new weights. Estimate vari-

ance of this iteration step & by Eq. 12; this time
the loss in the degrees of freedom is considered:

(11)

W, =

E [y, — y(x, )]2

var(y), = 56 (12)

i=1 (x )

EXIT IF condition 13 holds true:

var(y),_,

— < 1. 3
var(y), 1.05 (13)

ELSE continue with step 2.

3. Results and discussion

3.1. The limitations of OLS regression for
heteroscedastic CE calibration data

Calibration lines are usually calculated by
ordinary least squares (OLS) regressions. Actu-
ally the use of OLS calculations should be
restricted to cases, where the signal standard
deviation is independent of the signal itself
(homoscedasticity). A systematic error occurs, if
heteroscedastic calibration data are evaluated by
using OLS regressions. This error can be avoided
by using weighted least squares (WLS) regres-
sions [7,8,10-12], compare Experimental).
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It is well known that calibration data are
heteroscedastic in CE. This does not cause
problems, if the concentration range is small. In
this case statistical tests will fail to prove heteros-
cedasticity, and the systematic error will remain
insignificant. If the expected concentration is
rather well known, the use of the external
standard evaluation is an interesting alternative
[13].

However, there are cases where one wants to
calibrate over a concentration range of one order
of magnitude or more, ¢.g. if drug concentra-
tions in urine or other body fluids shall be
investigated. Here it is important to consider the
magnitude of the systematic crror that will occur
by ignoring heteroscedasticity and using OLS
estimations. Therefore calibration functions were
calculated by using OLS and WLS for the same
set of data. The results in Fig. 1 demonstrate
that there is a clear difference between these
methods. It is also well known from statistical
theory that WLS gives the better estimation.
However. the difference between the calibration
functions still does not reveal the magnitude of
the systematic error that is made by OLS regres-
sion. The line estimated by WLS could be a very
good approximation of the true relationship. In
this case the whole difference observed would be

caused by the systematic error using OLS calcu-
lations. However, both lines are influenced by
random error. Thus both deviate from the true
relationship. If they deviate to different sides,
the difference between them could become very
large. although their deviation from the true
relationship would be similar.

The true relationship is never known when
experimental data are considered. Thus simu-
lated sets of data must be used to clarify the
amount of error made by OLS estimations. Here
the true relationship is known by definition. The
simulated data sets must be designed with similar
properties like real CE calibration data.

3.2. Properties of CE calibration data

The linear relationship between sample con-
centration and peak area is well known in CE.
However, although the dependence of the signal
standard deviation on the sample concentration
was recognized, this dependence was never sys-
tematically investigated. Thus the degree of
heteroscedasticity for typical CE calibration data
was unknown. The signal standard deviation is
approximately proportional to the signal itself
tor the data set shown in Fig. 1 (Fig. 2). A

Ac 100 4 _./'O
80 4
60 -
40 - Data
oLS
D I Y - < b WLS/ IV
——— GLS/VFE
08 ; . \
0 1 2 3 4 5

cs [#/1]

Fig. 1. Significant difference of regression lines. calculated using weighted least squares (GLS/VFE, WLS/1V) and ordinary least

squares (OLS). Same data as in Fig. 2 of Part 1 [4] were used.
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sdv(A;) 4

significant increase of the standard deviation
with concentration was observed for other CE
calibrations as well [5,14]. In these cases the
standard deviation was a bit slower increasing
than the signal, thus the relative standard devia-
tion decreased with higher concentration.

The characteristics of the variance function are
not only important for the following simulation
experiments, but can also be used to estimate the
contribution of different error sources to the
total error in CE. Detection, integration, injec-
tion, dilution, weighting of substances and
changing migration times from run to run are
considered to be the main error sources in CE.

The error function for UV detection is well
known [15-17]. After passing a minimum the
detection error increases stronger than linear
with the concentration (Eq. 14):

relsdv(A) =k - V1+10°* (14)

Here A is the absorbance. The constant factor &
depends on the transmission of the reference
solution and on its standard deviation.

The integration error of the considered data

T L 1

3 4 5
cs (8]

Fig. 2. Relationship between concentration and signal standard deviation for the data set presented in Fig. 1.

set can be neglected. The proper estimation of
the baseline was visually controlled for all elec-
tropherograms. A few electropherograms at low
concentrations had to be reintegrated.

The error is proportional to the sample con-
centration for injection, dilution and variation of
migration times. For example, if a volume of 1 nl
is injected with a standard deviation of 0.01 nl,
the injected amount will be 1 ng and its standard
deviation 10 pg, if a concentration of 1 g/l is
injected, but only 10 pg with a standard devia-
tion of 0.1 pg, if 10 mg/l are injected.

These errors, that are proportional to the
concentration, seem to contribute the most to
the total error. The detection error seems to
have less influence.

There is another interesting consequence of
this observed linearity of the variance function.
The ratio of the standard deviations at the
highest and the lowest concentration within the
working range (R.,; Eq. 15) can be estimated
from the ratio of the highest to the lowest
concentration used for the calibration prior to
the experiment. This is an important help to plan
CE calibration experiments and evaluations.
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—_— de(yx:max)
sdv de(yx:min) (15)

3.3. Design of the simulation experiments

These simulations were designed to investigate
the consequences of heteroscedasticity in gener-
al. Thus a linear functional relationship between
x and y was simulated (Eq. 1). In CE x and y
correspond to the sample concentration and the
obtained signal, e.g. the peak area, respectively.

For simplicity the intercept «, was always
chosen as 0, the slope a, as 1. Other parameters
do not change the results. These are only in-
fluenced by the signal-to-noise ratio and the
increase of the standard deviation with concen-
tration.

The relationship between standard deviation
sdv(y) and x was also chosen linear for these
simulations (Eq. 2). This was the strongest
increase of the standard deviation so far ob-
served in CE. The stronger this increase, the
higher the systematic errors by using OLS. Thus
these simulation demonstrate the systematic er-
rors that must be expected in the worst case
possible.

3.4. Performance of difference regression
algorithms

The quality of a WLS regression depends on
the knowledge about the variance function. The
results are best, if the variances var(y;) are
known. Thus the proper estimation of the vari-
ance function is very important. A number of
different algorithms were designed for this pur-
pose (reviewed in [7,8]). Mainly the two WLS
algorithms WLS/TV and GLS/VFE were tested
and compared to ordinary least squares (OLS)
regression in this work.

Other algorithms, e.g. robust regression algo-
rithms ([18,19]; cited in [20}), were considered in
pilot studies. These algorithms also use weight-
ing but to distinguish outliers from data belong-
ing to the calibration set. They are very effective
in doing this: their breakdown point is 50%

outliers. These algorithms showed some slight
advantages compared to OLS. However, they
were by far inferior to the two mainly considered
WLS algorithms. The calculation of robust re-
gressions is very time-consuming. Thus it was
decided not to include them in the main in-
vestigations.

The simple WLS/IV just uses inverse vari-
ances as weighting factors w; (Eq. 3). The
calculation of the regression parameters is analo-
gous to OLS (Eqgs. 4-6). However, the variance
of a random sample is a disputable estimator for
the variance of the whole set {11,12,21]. Even if
the standard deviation is simulated as propor-
tional to the signal, the standard deviation of a
random sample corresponding to lower signals
can be higher than at higher signals, caused by
random errors. Thus the use of inverse variances
as weighting factors can be misleading [8].

A further developed algorithm GLS/VFE
(generalized least squares using variance func-
tion estimation) was recommended in preceding
works [7,8]. The difficulty of estimating the
variance is overcome by an iteration, where
regression parameters and the variance function
can be determined at the same time. The vari-
ance function is the dependence between signal y
and the variance of the signal var(y). This can
often be expressed by Eq. 16.

var(y) = o’y*® (16)

Here o is the variance var(y) at y = 1, and the
variance parameter @ represents the degree of
heteroscedasticity. If ® equals 0, then the vari-
ance is constant (homoscedasticity). If @ equals
1, then the standard deviation of the signal is
proportional to the signal itself. The algorithms
WLS/IV and GLS/VFE were compared to
WLS/SV (weighted least squares using simulated
variances). Here the inverse of the known vari-
ances from the simulation procedure were used
as weighting factors. The regression parameters
were again calculated using Eqs. 4-6.

WLS/SV cannot be used in practice, because
the true variance function is always unknown for
experimental data. However, the error in es-
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timating the simulated regression parameters is
only caused by the random scatter of the simula-
tion data, if this algorithm is used. The sys-
tematic error by erroneous estimation of the
variances is avoided by using the true ones. Thus
WLS/SV offers a possibility to recognize the
amount of error which is caused by inprecise
estimation of the variance function using other
algorithms.

Some error measures were defined to quantify
the systematic error that must be expected for
the different algorithms in dependence on the
ratio R.,,. The mean squared error (MSE, Eq.
17) is a good measure for the average error that
is caused by the estimation of the calibration
function [7,11,12,22].

MSE = 2, [(ay + ax,) = (ay +a,%)]’ (17)

Here a, and a, are intercept and slope of the
calibration function, «, and «, are the corre-
sponding parameters of the simulated true func-
tion.

The true x values x, for a given y are known
from the parameters of the simulated function
(Eq. 18). The difference between the x value
X.um €stimated using the calibration function
(Eq. 19) and x, is a measure for the total error
Err caused by the calibration function (Eq. 20,
compare Fig. 3). This total error consists of the
random error within the data pairs used for the
calibration and the systematic error caused by
incorrect weighting. Errors are considered at the
lowest concentration (Err,,,) and the highest
concentration (Err,;) used for the calibration.

-«
xg =L o : (18)
—a
Ko =T (19)
Err |xestm xOl (20)
X0

The data in Table 1 show, that there is a big
difference in performance between the different
algorithms. The strongest distinction is observed
for the systematic error at the lowest concen-

|

o y

Xestm

Fig. 3. Determination of the parameters x, (Eq. 18) and
X..m (Eq. 19), which are needed to estimate the error Err
(Eq. 20) caused by the estimated calibration function ESTM
at different x. The plain line represents the simulated
function SIM. Especially at low x values the Err,  is strongly
influenced by the error of the calibration function.

tration, Err,,,,. This can be understood by look-
ing at Fig. 4: if no weights are used, the data at
high concentrations are given too much weight.
Wrong estimations at high concentrations work
like a lever and lead to a considerable systematic
error at low concentrations.

The error at low concentrations Err,, in
dependence on R, is the most important aspect
of these investigations. The choice of the posi-
tion of the x; other than equidistant or of @
other than 1 has only very minor effects [com-
pare differences between sections (a) in Tables 1
and 2 as well as between sections (b) in Tables 1
and 2]. The results are independent of the signal-
to-noise ratio [sdv(y)/y] used in the simulations.

This relationship between Err, , and R4, is
presented in Table 3. If R, equals 50, the error
is increased by more than 10 fold, if OLS
regression is used. Here the error caused by the
wrong estimation of the calibration function is
more than 3-fold compared to the random error
at low concentrations [section (e) in Table 1, 0.33
compared to 0.1]. The error Err,, of OLS
regressions is still more than 1.5-fold higher than
of GLS/VFE, if R4, equals 5. The average error
caused by the OLS estimation of the calibration
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Differences in errors for various R, if different regression algorithms are used
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Err,,.. Erry, MSE
(@) R, =2, x,=15, 18, 21, 24, 27. 30
WLS/SV 0.02321 0.01822 0.2067
GLS/VFE 0.02337 0.01840 0.2010
WLS/IV 0.02475 0.02001 0.2514
OLS 0.02456 0.01912 0.2235
Normalized to GLS/VFE
WLS/SV 0.9929 0.9905 0.9865
GLS/VFE 1 1 1
WLS/1V 1.0587 1.0879 1.1997
OLS 1.0507 1.0395 1.0664
(b) Ry, =3.16, x; =15.0, 21.5, 28.0. 34.4, 40.1, 47.4
WLS/SV 0.02487 0.01678 0.4071
GLS/VFE 0.02494 0.01690 0.4089
WLS/IV 0.02626 0.01844 0.4993
OLS 0.03071 0.01848 0.4852
Normalized to GLS/VFE
WLS/SV 0.99972 0.9932 0.9957
GLS/VFE 1 1 1
WLS/IV 1.0533 1.0919 1.2210
OLS 1.2316 1.0934 1.1866
(©) R, =5.x =15 27.39.51. 63. 75
WLS/SV 0.02621 0.01512 0.7823
GLS/VFE 0.02656 0.01533 0.7968
WLS/1V 0.02772 0.01693 0.9747
OLS 0.04187 0.01786 1.0560
Normalized to GLS/VFE
WLS/SV 0.9870 0.9866 0.9818
GLS/VFE 1 1 1
WLS/1V 1.0435 1.1045 1.2232
OLS 1.5763 1.1652 1.3253
(d) R, =10, x, = 15. 42, 69. 96. 123. 150
WLS/SV 0.02774 0.01457 2.723
GLS/VFE 0.02780 0.01474 2.798
WLS/1V 0.02825 0.01625 3.426
OLS 0.07322 0.01787 4.081
Normalized to GLS/VFE
WLS/SV (1.9980 (.9884 0.9733
GLS/VFE 1 1 1
WLS/IV 1.0163 1.1028 1.2245
OLS 2.6343 1.2123 1.4586
(e) Ry, =50, x,= 15, 162. 309, 459. 603, 750
WLS/SV 0.02841 0.01294 54.00
GLS/VFE 0.02841 0.01297 54.37
WLS/TV 0.02848 0.01447 68.47
OLS (1.33258 0.01740 95.10

(Continued on p. 16)
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Table 1 (continued)

Err,., Err,, MSE
Normalized to GLS/VFE
WLS/SV 1.0000 0.9976 0.9932
GLS/VFE 1 1 1
WLS/IV 1.0012 1.1150 1.2594
OLS 11.7056 1.3409 1.7492

Number of data sets simulated for each condition: 2000. Each set consists of six equidistant blocks x; of y-values (n =48 data
pairs). First all y get the value of their x, (corresponds to a straight line with &, =0 and a, = 1), then normal distributed noise is
added ([6]; see Experimental). The standard deviation sdv of the noise is 0.1 (10%) of the corresponding signal y. The noise is

simulated proportional to signal, that means @ = 1.

function equals 0.0419 [section (c) in Table 1].
However, this error will be the double in a
number of cases. Thus this error cannot be
neglected compared to 0.1 random noise.

These investigations demonstrate the high
performance of the algorithm GLS/VFE. The
systematic errors caused by this algorithm are
negligible, as can be seen from comparison to
WLS/SV.

Table 4 offers a surprise in the first place. All
regression parameters are the same, if only two
concentrations are used for the calibration (2-
point calibration). The systematic error by over-
estimation of high concentrations using OLS
cannot take place. Thus Err,, remains small,
even if OLS is used. However, the use of a
2-point calibration for a concentration range of
one order of magnitude or more causes prob-
lems, too. It must be validated, whether the
method is really linear over some orders of
magnitude, and the used statistical tests must be
applicable in case of heteroscedasticity.

4. Conclusions

Weighted least squares regression (WLS)
methods are superior to ordinary least squares
(OLS) methods. If the ratio of standard devia-
tions within the concentration range R, exceeds
5. the additional error by using OLS cannot be
neglected; if R, exceeds 50, the use of WLS is
mandatory. However. it is advisable to use WLS
for smaller R, as well. The difference between
OLS and WLS is less. but was found significant

down to an R, of 3, which is consistent to
previous results [7]. Moreover results can never
get worse using WLS.

In CE the error is approximately linear to the
concentration. Thus the expected R, can be
estimated from the ratio of the highest and the
lowest concentration. Therefore it is possible to
decide if WLS will be necessary before the
calibration is started.

WLS is best if the weights are known. In this
work two methods to estimate weighting factors
were investigated. The further developed algo-
rithm GLS/VFE [7,8] is beneficial compared to
WLS/IV for a number of reasons. It is slightly
better in estimating the true regression coeffi-
cients, and it can be applied to all possible sets of
data, whilst WLS/IV needs several values y; with
identical x; to calculate the weights. Moreover, it
is not possible to estimate the variance function
properly, if the simpler WLS/IV is used. Thus
confidence intervals cannot be calculated correct-
ly, and the uncertainty of the calibration function
can only be roughly estimated. Therefore the
error of the analytical result is less precisely
obtained. GLS/VFE can be easily implemented
and shall be used in all cases, if heteroscedastici-
ty cannot be refused. The use of WLS/IV is still
much better than using OLS regression in these
cases.

The proper estimation of the variance function
is still a challenge. Outliers can influence its
estimation strongly. Other methods to estimate
different models of variance functions, especially
weighted robust methods, shall be the issue of
future work.
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Fig. 4. Known linear functions were obtained by simulation. The signal standard deviation was chosen proportional to the signal
[compare Experimental. same simulation parameters as for section (e) in Table 1]. In many simulations the data at high x values
are strongly influenced by the random error. If no weighting factors are used, actually all data are equally weighted with the factor
1 (Eqgs. 4-6). Thus the uncertain data at high concentration are given too much weight, if OLS is used (A). This leads to large
deviations between OLS-estimated and simulated. thus true. functions at low x values. This is shown in (B), which is a
magnification of (A). WLS algorithms provided a much better approximation. Over the whole range the lines estimated by
WLS/1V, GLS/VFE and the simulated line (&, =0, «,) can hardly be distinguished in this figure.
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Table 2

Differences in errors for different regression algorithms for various R,,,. if @ # 1; other conditions as in Table 1

Erm,,, Err,,

MSE

(@) R, =1.78, x,=15,42, 69, 96, 123, 150, @ = 0.25, that means the standard deviation of the noise at block x, can be calculated

as sdv(x,)=0.1-x

WLS/SV 0.003005 0.000446
GLS/VFE 0.003040 0.000447
WLS/IV 0.003255 0.000490
OLS 0.003182 0.000451
Normalized to GLS/VFE
WLS/SV 0.9884 0.9966
GLS/VFE 1 1
WLS/IV 1.0707 1.0950
OLS 1.0467 1.0087
(b) R, =3.16, x, =15, 42, 69, 96. 123, 150. @ = 0.5, that means
WLS/SV 0.006536 0.001400
GLS/VFE 0.006586 0.001410
WLS/IV 0.006955 0.001553
OLS 0.008366 0.001518
Normalized to GLS/VFE
WLS/SV 0.9924 0.9932
GLS/VFE 1 1
WLS/IV 1.0560 1.1021
OLS 1.2703 1.0778

0.003355
0.003393
0.004064
0.003515

0.9886
1

1.1976
1.0358

sdv(x,)=0.1-x*
0.02893
0.02918
0.03551
0.03378

0.9915
1

1.2171
1.1579

Possibly the use of 2-point calibrations is an
interesting alternative to WLS regression. A
systematic error is also avoided in our simula-
‘tions. However, the use of 2-point calibrations
over more than one order of magnitude sounds
rather exotic for the practitioner. In the simula-
tions considered the true function was strictly

Table 3

linear. If 2-point calibrations should be used, this
must be true for the analytical method as well.
Moreover, linearity has to be validated, which
seems to be not trivial, especially in the heteros-
cedastic case. This another topic for further
investigations.

Those considerations are valid for other ana-

The difference in performance between the algorithms OLS and GLS/VFE is most pronounced for the total error caused by the
calibration function at Jow x, Err, ., (Eq. 20, Fig. 3); this error is considered as a function of the degree of heteroscedasticity,

which is expressed as R, (Eq. 15)

R, Normalized Err, of OLS Compare table
2 1.05 la
3.16 1.23 b
S 1.57 Ic

10 2.63 1d

50 11.71 le

The conditions of the simulations are described in Table 1.
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Two-point calibrations

Err, . Err,, MSE
WLS/SV 0.01626 0.01669 4.943
GLS/VFE 0.01626 0.01669 4.943
WLS/1V 0.01626 0.01669 4.943
OLS 0.01626 0.01669 4.943

Normalized to GLS/VFE

WLS/SV 1.0000 1.0000 1.0000
GLS/VFE 1 1 1
WLS/IV 1.0000 1.0000 1.0000
OLS 1.0000 1.0000 1.0000

If 2-point calibrations are used. there is no additional error caused by heteroscedasticity. This is not surprising: a line is defined by
two points, thus there is only one possibility. Systematic errors can only appear, if there are at least three x values: now one value
can be given too much weight. Possibly the use of 2-point calibrations is an interesting alternative to WLS regression. However,
linearity has to be validated, which seems to be not trivial, especially in the heteroscedastic case. Simulation conditions like in
Table 1, but only two equidistant blocks x, of 24 v values were simulated, R ,, = 10, x, = 15, 150.

lytical techniques as well, if their characteristics
of calibration and variance function are similar.

Symbols and abbreviations

a,

&
Err,,

Errlow
GLS/VFE

k
L
MSE

OLS
relsdv
dev

intercept of estimated regression
line

slope of estimated regression line
intercept of simulated line

slope of simulated line

absorbance

corrected peak area

capillary electrophoresis

sample concentration

normal distributed random variable
total error caused by the calibration
function at high x values

total error caused by the calibration
function at low x values

algorithm: generalized least squares
using variance function estimations
iteration number

likelihood

mean squared error

number of data pairs per set
algorithm: ordinary least squares
relative standard deviation

ratio of the standard deviations at
the highest and the lowest concen-

5

tration within the working range
(Eq. 15)

o variance at y =1

sdv standard deviation

¢ variance parameter

var variance

w, weighting factor

WLS/IV  algorithm: weighted least squares
using inverse variances

WLS/SV  algorithm: weighted least squares
using simulated variances

X, true x at given y

X, coordinate of the centroid

Xeoem x estimated by regression parame-
ters a, and a, at given y

X, coordinate of simulated data pair;
corresponds to sample concentra-
tion in CE

P coordinate of the centroid

v, coordinate of simulated data pair;
corresponds to signal in CE

y(x) estimated regression function
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